skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yoo, Yeawon"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present a wisdom of crowds study where participants are asked to order a small set of images based on the number of dots they contain and then to guess the respective number of dots in each image. We test two input elicitation interfaces—one elicits the two modalities of estimates jointly and the other independently. We show that the latter interface yields higher quality estimates, even though the multimodal estimates tend to be more self-contradictory. The inputs are aggregated via optimization and voting-rule based methods to estimate the true ordering of a larger universal set of images. We demonstrate that the quality of collective estimates from the simpler yet more computationally-efficient voting methods is comparable to that achieved by the more complex optimization model. Lastly, we find that using multiple modalities of estimates from one group yields better collective estimates compared to mixing numerical estimates from one group with the ordinal estimates from a different group. 
    more » « less
  2. null (Ed.)
    Rank aggregation is widely used in group decision making and many other applications, where it is of interest to consolidate heterogeneous ordered lists. Oftentimes, these rankings may involve a large number of alternatives, contain ties, and/or be incomplete, all of which complicate the use of robust aggregation methods. In particular, these characteristics have limited the applicability of the aggregation framework based on the Kemeny-Snell distance, which satisfies key social choice properties that have been shown to engender improved decisions. This work introduces a binary programming formulation for the generalized Kemeny rank aggregation problem—whose ranking inputs may be complete and incomplete, with and without ties. Moreover, it leverages the equivalence of two ranking aggregation problems, namely, that of minimizing the Kemeny-Snell distance and of maximizing the Kendall-τ correlation, to compare the newly introduced binary programming formulation to a modified version of an existing integer programming formulation associated with the Kendall-τ distance. The new formulation has fewer variables and constraints, which leads to faster solution times. Moreover, we develop a new social choice property, the nonstrict extended Condorcet criterion, which can be regarded as a natural extension of the well-known Condorcet criterion and the Extended Condorcet criterion. Unlike its parent properties, the new property is adequate for handling complete rankings with ties. The property is leveraged to develop a structural decomposition algorithm, through which certain large instances of the NP-hard Kemeny rank aggregation problem can be solved exactly in a practical amount of time. To test the practical implications of the new formulation and social choice property, we work with instances constructed from a probabilistic distribution and with benchmark instances from PrefLib, a library of preference data. 
    more » « less